Biases of tree-independent-character-subsampling methods
نویسندگان
چکیده
منابع مشابه
Subsampling Methods for Persistent Homology
Persistent homology is a multiscale method for analyzing the shape of sets and functions from point cloud data arising from an unknown distribution supported on those sets. When the size of the sample is large, direct computation of the persistent homology is prohibitive due to the combinatorial nature of the existing algorithms. We propose to compute the persistent homology of several subsampl...
متن کاملSubsampling for Chain-Referral Methods
We study chain-referral methods for sampling in social networks. These methods rely on subjects of the study recruiting other participants among their set of connections. This approach gives us the possibility to perform sampling when the other methods, that imply the knowledge of the whole network or its global characteristics, fail. Chainreferral methods can be implemented with random walks o...
متن کاملThe Biases of Decision Tree Pruning Strategies
Post pruning of decision trees has been a successful approach in many real-world experiments, but over all possible concepts it does not bring any inherent improvement to an algorithm's performance. This work explores how a PAC-proven decision tree learning algorithm fares in comparison with two variants of the normal top-down induction of decision trees. The algorithm does not prune its hypoth...
متن کاملTree-Independent Dual-Tree Algorithms
Dual-tree algorithms are a widely used class of branch-and-bound algorithms. Unfortunately, developing dual-tree algorithms for use with different trees and problems is often complex and burdensome. We introduce a four-part logical split: the tree, the traversal, the point-to-point base case, and the pruning rule. We provide a meta-algorithm which allows development of dual-tree algorithms in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Phylogenetics and Evolution
سال: 2016
ISSN: 1055-7903
DOI: 10.1016/j.ympev.2016.04.022